PLoS genetics

Epigenetic regulation of a murine retrotransposon by a dual histone modification mark.

PMID 20442873


Large fractions of eukaryotic genomes contain repetitive sequences of which the vast majority is derived from transposable elements (TEs). In order to inactivate those potentially harmful elements, host organisms silence TEs via methylation of transposon DNA and packaging into chromatin associated with repressive histone marks. The contribution of individual histone modifications in this process is not completely resolved. Therefore, we aimed to define the role of reversible histone acetylation, a modification commonly associated with transcriptional activity, in transcriptional regulation of murine TEs. We surveyed histone acetylation patterns and expression levels of ten different murine TEs in mouse fibroblasts with altered histone acetylation levels, which was achieved via chemical HDAC inhibition with trichostatin A (TSA), or genetic inactivation of the major deacetylase HDAC1. We found that one LTR retrotransposon family encompassing virus-like 30S elements (VL30) showed significant histone H3 hyperacetylation and strong transcriptional activation in response to TSA treatment. Analysis of VL30 transcripts revealed that increased VL30 transcription is due to enhanced expression of a limited number of genomic elements, with one locus being particularly responsive to HDAC inhibition. Importantly, transcriptional induction of VL30 was entirely dependent on the activation of MAP kinase pathways, resulting in serine 10 phosphorylation at histone H3. Stimulation of MAP kinase cascades together with HDAC inhibition led to simultaneous phosphorylation and acetylation (phosphoacetylation) of histone H3 at the VL30 regulatory region. The presence of the phosphoacetylation mark at VL30 LTRs was linked with full transcriptional activation of the mobile element. Our data indicate that the activity of different TEs is controlled by distinct chromatin modifications. We show that activation of a specific mobile element is linked to a dual epigenetic mark and propose a model whereby phosphoacetylation of histone H3 is crucial for full transcriptional activation of VL30 elements.

Related Materials

Product #



Molecular Formula

Add to Cart

Anti-acetyl-Histone H3 Antibody, Detect acetyl-Histone H3 with Anti-acetyl-Histone H3 Antibody (Rabbit Polyclonal Antibody), that has been shown to work in WB, ICC, ChIP, ChIP-seq.
Anti-acetyl-Histone H4 Antibody, Anti-acetyl-Histone H4 Antibody is a Rabbit Polyclonal Antibody for detection of acetyl-Histone H4 also known as H4 histone family member A, histone 1-H4a & has been validated in ChIP, ICC, IP & WB.
Anti-HDAC1 Antibody, Use Anti-HDAC1 Antibody (Rabbit Polyclonal Antibody) validated in EA, ICC, IP, WB to detect HDAC1 also known as histone deacetylase 1.
Anti-HDAC2 Antibody, clone 3F3, Anti-HDAC2 Antibody, clone 3F3 is a Mouse Monoclonal Antibody for detection of HDAC2 also known as YY1-associated factor 1, histone deacetylase 2 & has been validated in ICC, IP & WB.
Anti-phospho (Ser10)-acetyl (Lys14)-Histone H3 Antibody, Anti-phospho (Ser10)-acetyl (Lys14)-Histone H3 Antibody is a rabbit polyclonal that detects Histone 3 phosphorylated at serine 10 and acetylated at lysine 14. This highly specific antibody, also known as Anti-H3S10pK14ac is published in peer reviewed journals & validated in ChIP, ICC, WB, ChIP-seq.
Anti-trimethyl-Histone H3 (Lys4) Antibody, Anti-trimethyl-Histone H3 (Lys4) Antibody is a rabbit polyclonal antibody for detection of Histone H3 trimethylated at lysine 4. Also known as Anti-H3K4me3, this highly specific and well published antibody has been validated in ChIP, DB, WB, PIA, ChIP-seq.