EMAIL THIS PAGE TO A FRIEND

Cancer research

Activation of FOXO3a is sufficient to reverse mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor chemoresistance in human cancer.


PMID 20484037

Abstract

Drug resistance is a central challenge of cancer therapy that ultimately leads to treatment failure. In this study, we characterized a mechanism of drug resistance that arises to AZD6244, an established mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 inhibitor currently being evaluated in cancer clinical trials. AZD6244 enhanced the expression of transcription factor FOXO3a, which suppressed cancer cell proliferation. In AZD6244-resistant cancer cells, we observed the impaired nuclear localization of FOXO3a, reduced FOXO3a-mediated transcriptional activity, and decreased the expression of FOXO3a target gene Bim after cell treatment with AZD6244. Resistant cells could be sensitized by phosphoinositide 3-kinase (PI3K)/AKT inhibitors, which are known to enhance FOXO3a nuclear translocation. Our findings define FOXO3a as candidate marker to predict the clinical efficacy of AZD6244. Furthermore, they suggest a mechanism of resistance to MEK inhibitors that may arise in the clinic yet can be overcome by cotreatment with PI3K/AKT inhibitors.