Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes

Reductive dechlorination of chlorophenols in estuarine sediments of Lake Shinji and Lake Nakaumi.

PMID 20512730


Dechlorination of all mono- and dichlorophenol isomers in anaerobic sediment samples of estuarine Lake Shinji and Lake Nakaumi was examined to characterize the chlorophenol-dechlorinating microbial communities in the environments with different salinity levels. Dechlorination was observed only in 2-chlorophenol (2-CP), 3-chlorophenol (3-CP) and 2,6-dichlorophenol (2,6-DCP), and in 2-CP and 2,6-DCP in the Lake Shinji and Nakaumi sediment, respectively. In the sediment of Lake Shinji, the highest activity was observed without adding sodium chloride and sulfate, whereas in the Lake Nakaumi sediment, the highest activity was at 0.7 % of sodium chloride and 6.0 mM of sodium sulfate. The chlorophenols were degraded to benzoate via phenol in both sediments under methanogenic conditions. Benzoate then disappeared from the cultures. All microbial consortia enriched with each monochlorophenol dechlorinated 2-CP, but showed different substrate specificities for dichlorophenols as follows: 2-CP-enriched consortium dechlorinated 2,3-dichlorophenol and 2,6-DCP, 3-CP-enriched consortium dechlorinated all dichlorophenol isomers, and 4-chlorophenol-enriched consortium dechlorinated 2,4-dichlorophenol and 2,6-DCP. Maintenance of the population by halorespiration was suggested in the dechlorination of 2-CP.