A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen.

PMID 20570294


Recently, greenhouse gas emissions have been of great concern globally. Ruminant livestock due to production of methane during normal fermentation in the rumen contributes substantially to the greenhouse effects. During the recent decade, a paradigm shift has been initiated whether plant secondary metabolites (PSM) could be exploited as natural safe feed additives alternative to chemical additives to inhibit enteric methanogenesis. More than 200,000 defined structures of PSM have been known. Some plants or their extracts with high concentrations of bioactive PSM such as saponins, tannins, essential oils, organosulphur compounds, flavonoids and many other metabolites appear to have potential to inhibit methane production in the rumen. The possible mechanisms and effects of many PSM on rumen methanogenesis are not clearly understood. Saponins may decrease methanogenesis through the inhibition of rumen protozoa and in turn may suppress the numbers and activity of methanogens. Although the direct effect of saponins on methanogens has not been demonstrated, saponins might inhibit methanogens at high doses. Tannins may inhibit the methanogenesis directly and also via inhibition of protozoal growth. Essential oils, organosulphur compounds and flavonoids appear to have direct effects against methanogens, and a reduction of protozoa associated methanogenesis probably plays a minor role for these metabolites. The chemical structure and molecular weight of the PSM and chemical composition of diets dependent upon the different feeding regimes may influence the effects of PSM on methane production. Although PSM may negatively affect nutrient utilization, there is evidence that methanogenesis could be suppressed without adversely affecting rumen fermentation, which could be exploited to mitigate methane emission in ruminants.

Related Materials

Product #



Molecular Formula

Add to Cart

1-Lauroyl-rac-glycerol, ≥99%