EMAIL THIS PAGE TO A FRIEND

The journal of physical chemistry. B

Formation of aminyl radicals on electron attachment to AZT: abstraction from the sugar phosphate backbone versus one-electron oxidation of guanine.


PMID 20575557

Abstract

Employing electron spin resonance (ESR) spectroscopy, we have characterized the radicals formed in 3'-azido-3'-deoxythymidine (3'-AZT) and in its 5'-analog 5'-azido-5'-deoxythymidine (5'-AZT) after electron attachment in gamma-irradiated aqueous (H(2)O or D(2)O) glassy (7.5 M LiCl) systems. ESR spectral studies and theoretical calculations show that the predominant site of electron capture in 3'-AZT and in 5'-AZT is at the azide group and not at the thymine moiety. The azide group in AZT is therefore more electron affinic than the most electron affinic DNA base, thymine. Electron attachment to 3'-AZT and 5'-AZT results in an unstable azide anion radical intermediate (RN(3)*(-)) that is too short-lived to be observed in our work even at 77 K. At 77 K, we observe the neutral aminyl radical (RNH*) after loss of N(2) from RN(3)*(-) followed by protonation of nitrene anion radical (RN*(-)) to give RNH*. The expected RN*(-) intermediate is not observed as protonation from water is complete at 77 K even under highly basic conditions. Formation of RND* in D(2)O solutions confirms water as the source of the NH proton in the RNH*. Our assignments to these radicals are aided by DFT calculations for hyperfine coupling constants that closely match the experimental values. On annealing to higher temperatures (ca. 160-170 K), RNH* undergoes bimolecular hydrogen abstraction reactions from the thymine methyl group and the sugar moiety resulting in the formation of the thymine allyl radical (UCH(2)*) and two sugar radicals, C3'* and C5'*. RNH* also results in one-electron oxidation of the guanine base in 3'-AZG. This work provides a potential mechanism for the reported radiosensitization effects of AZT.