EMAIL THIS PAGE TO A FRIEND

Biochemistry

Alternative sigma factors in the free state are equilibrium mixtures of open and compact conformations.


PMID 20923236

Abstract

Conformational switching upon core RNA polymerase binding is an integral part of functioning of bacterial sigma factors. Here, we have studied dynamical features of two alternative sigma factors. A study of fluorescence resonance energy transfer and hydrodynamic measurements in Escherichia coli σ(32) suggest a compact shape like those found in complex with anti-sigma factors. On the other hand, the fluorescence anisotropy of probes attached to different regions of the protein and previous hydrogen exchange measurements suggest significant internal flexibility, particularly in the C-terminal half and region 1. In a homologous sigma factor, σ(F) of Mycobacterium tuberculosis, emission spectra and fluorescence resonance energy transfer between the single tryptophan (W112) and probes placed in different regions suggest a compact conformation for a major part of the N-terminal half encompassing region 2 and the flexible C-terminal half. Fluorescence anisotropy measurements suggest significant flexibility in the C-terminal half and region 1, as well. Thus, free alternative sigma factors may be in equilibrium between two conformations: a compact one in which the promoter interacting motifs are trapped in the wrong conformation and another less abundant one with a more open and flexible conformation. Such flexibility may be important for promoter recognition and interaction with many partner proteins.