EMAIL THIS PAGE TO A FRIEND

Journal of bacteriology

Galactose catabolism in Caulobacter crescentus.


PMID 210153

Abstract

Caulobacter crescentus wild-type strain CB13 is unable to utilize galactose as the sole carbon source unless derivatives of cyclic AMP are present. Spontaneous mutants have been isolated which are able to grow on galactose in the absence of exogenous cyclic nucleotides. These mutants and the wild-type strain were used to determine the pathway of galactose catabolism in this organism. It is shown here that C. crescentus catabolizes galactose by the Entner-Duodoroff pathway. Galactose is initially converted to galactonate by galactose dehydrogenase and then 2-keto-3-deoxy-6-phosphogalactonate aldolase catalyzes the hydrolysis of 2-keto-3-deoxy-6-phosphogalactonic acid to yield triose phosphate and pyruvate. Two enzymes of galactose catabolism, galactose dehydrogenase and 2-keto-3-deoxy-6-phosphogalactonate aldolase, were shown to be inducible and independently regulated. Furthermore, galactose uptake was observed to be regulated independently of the galactose catabolic enzymes.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

04624
Lithium 3-deoxy-2-keto-6-phospho-D-galactonate, ≥95.0% (TLC)
C6H11O9P · xLi+