EMAIL THIS PAGE TO A FRIEND

The Journal of organic chemistry

Reaction of lithium diethylamide with an alkyl bromide and alkyl benzenesulfonate: origins of alkylation, elimination, and sulfonation.


PMID 21077695

Abstract

A combination of NMR, kinetic, and computational methods are used to examine reactions of lithium diethylamide in tetrahydrofuran (THF) with n-dodecyl bromide and n-octyl benzenesulfonate. The alkyl bromide undergoes competitive S(N)2 substitution and E2 elimination in proportions independent of all concentrations except for a minor medium effect. Rate studies show that both reactions occur via trisolvated-monomer-based transition structures. The alkyl benzenesulfonate undergoes competitive S(N)2 substitution (minor) and N-sulfonation (major) with N-sulfonation promoted at low THF concentrations. The S(N)2 substitution is shown to proceed via a disolvated monomer suggested computationally to involve a cyclic transition structure. The dominant N-sulfonation follows a disolvated-dimer-based transition structure suggested computationally to be a bicyclo[3.1.1] form. The differing THF and lithium diethylamide orders for the two reactions explain the observed concentration-dependent chemoselectivities.