Molecular biology reports

Cloning, characterization and transcriptional analysis of two phosphate acetyltransferase isoforms from Azotobacter vinelandii.

PMID 21104132


Acetate is abundant in soil contributing to a great extent on carbon cycling in nature. Phosphate acetyltransferase (Pta, EC catalyzes the reversible transfer of the acetyl group from acetyl-P to CoA forming acetyl-CoA and inorganic phosphate, participating to acetate assimilation/dissimilation reactions. In the present study, we demonstrate that Azotobacter vinelandii, a nitrogen-fixing, free-living, soil bacterium, possesses two class II phosphate acetyltransferase isoforms, AvPTA-1 and AvPTA-2, with different kinetic properties. At the acetyl-CoA forming direction, AvPTA-1 has lower affinity for acetyl-P and higher affinity for CoA than AvPTA-2 while at the acetyl-P forming direction; activity was measured only for AvPTA-1. Quantification of their expression patterns by RT-qPCR indicated that both genes are expressed during exponential growth on glucose or acetate and are down-regulated in the stationary phase. The ammonium availability during acetate growth resulted in up-regulation of Avpta-2 expression only. Further, the gene expression patterns of other related gene transcripts were also investigated, in order to understand the influence of each pathway in the assimilation/dissimilation of acetate.