EMAIL THIS PAGE TO A FRIEND

The Journal of neuroscience : the official journal of the Society for Neuroscience

The interaction between tropomyosin-related kinase B receptors and presynaptic muscarinic receptors modulates transmitter release in adult rodent motor nerve terminals.


PMID 21147991

Abstract

The neurotrophin brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4) and the receptors tropomyosin-related kinase B (trkB) and p75(NTR) are present in the nerve terminals on the neuromuscular junctions (NMJs) of the levator auris longus muscle of the adult mouse. Exogenously added BDNF or NT-4 increased evoked ACh release after 3 h. This presynaptic effect (the size of the spontaneous potentials is not affected) is specific because it is not produced by neurotrophin-3 (NT-3) and is prevented by preincubation with trkB-IgG chimera or by pharmacological block of trkB [K-252a (C₂₇H₂₁N₃O₅)] or p75(NTR) [Pep5 (C₈₆H₁₁₁N₂₅O₁₉S₂] signaling. The effect of BDNF depends on the M₁ and M₂ muscarinic acetylcholine autoreceptors (mAChRs) because it is prevented by atropine, pirenzepine and methoctramine. We found that K-252a incubation reduces ACh release (~50%) in a short time (1 h), but the p75(NTR) signaling inhibitor Pep5 does not have this effect. The specificity of the K-252a blocking effect on trkB was confirmed with the anti-trkB antibody 47/trkB, which reduces evoked ACh release, like K-252a, whereas the nonpermeant tyrosine kinase blocker K-252b does not. Neither does incubation with the fusion protein trkB-IgG (to chelate endogenous BDNF/NT-4), anti-BDNF or anti-NT-4 change ACh release. Thus, the trkB receptor normally seems to be coupled to ACh release when there is no short-term local effect of neurotrophins at the NMJ. The normal function of the mAChR mechanism is a permissive prerequisite for the trkB pathway to couple to ACh release. Reciprocally, the normal function of trkB modulates M₁- and M₂-subtype muscarinic pathways.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

M105
Methoctramine hydrate, ≥97% (NMR), solid
C36H62N4O2 · 4HCl · xH2O