Journal of chromatography. A

Determination of bile acids in pig liver, pig kidney and bovine liver by gas chromatography-chemical ionization tandem mass spectrometry with total ion chromatograms and extraction ion chromatograms.

PMID 21176836


An effective method has been developed for quantitative determination of six bile acids including lithocholic acid (LCA), deoxycholic acid (DCA), chenodeoxycholic acid (CDCA), hydodeoxycholic acid (HDCA), cholic acid (CA) and ursodeoxycholic acid (UDCA) in biological tissues including pig liver, pig kidney and bovine liver by gas chromatography-chemical ionization/tandem mass spectrometry (GC-CI/MS/MS). Camphor-10-sulphonic acid (CSA) was proposed as effective catalyst for bile acid derivatization. Reactions were accelerated ultrasonically. The effects of different catalysts and reaction times on derivatization efficiency were evaluated and optimized. Bile acids were determined as methyl ester-trimethylsilyl ether and methyl ester-acetate derivatives. The efficiency of trimethylsilylation and acetylation was evaluated. Trimethylsilylation was done with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) as the trimethylsilyl donating reagent in a ultrasonic bath for 20 min. Acetylation was done in pyridine with acetic anhydride at 40-45°C for 4 h. The former reaction was faster than the latter. Thus, trimethylsilylation was employed for the quantitative analysis. Negligible interferences from sterols in biological matrices were observed when the biological samples were treated with solid phase extraction before GC-CI/MS/MS. The linearity, reproducibility, detection limit and recovery were evaluated under the optimized conditions. Satisfactory results were obtained when bile acid derivatives of LCA, CDCA, HDCA, and UDCA were determined with total ion chromatograms (TIC) while DCA and CA were determined with extracted ion chromatograms (EIC), respectively. The detection limits (S/N=3) for six bile acids in biological tissues were ranging from 0.40 to 1.6 ng/mL and the recoveries indicated that the proposed method was feasible for the determination of trace bile acids in the biological samples studied. The experimental results for the animal tissues purchased from five different markets were compared. Interestingly, all of the six bile acids were present in pig liver while only the dihydroxy bile acids, DCA, CDCA and HDCA were found in pig kidney. In addition to DCA and CDCA, trihydroxy bile acid, CA, are the major bile acids in bovine liver.