EMAIL THIS PAGE TO A FRIEND

American journal of physiology. Heart and circulatory physiology

Ca2+ sensitization and PKC contribute to exercise training-enhanced contractility in porcine collateral-dependent coronary arteries.


PMID 21297028

Abstract

Exercise training enhances endothelium-dependent coronary vasodilatation, improving perfusion and contractile function of collateral-dependent myocardium. Paradoxically, studies from our laboratory have revealed increased Ca(2+)-dependent basal active tone in collateral-dependent arteries of exercise-trained pigs. In this study, we tested the hypothesis that exercise training enhances agonist-mediated contractile responses of collateral-dependent arteries by promoting Ca(2+) sensitization. Ameroid constrictors were surgically placed around the proximal left circumflex coronary (LCX) artery of female Yucatan miniature pigs. Eight weeks postoperatively, pigs were randomized into sedentary (pen confined) or exercise-training (treadmill run; 5 days/wk; 14 wk) groups. Arteries (∼150 μm luminal diameter) were isolated from the collateral-dependent and nonoccluded (left anterior descending artery supplied) myocardial regions, and measures of contractile tension or simultaneous tension and intracellular free Ca(2+) concentration levels (fura-2) were completed. Exercise training enhanced contractile responses to endothelin-1 in collateral-dependent compared with nonoccluded arteries, an effect that was more pronounced in the presence of nitric oxide synthase inhibition (N(ω)-nitro-l-arginine methyl ester; 100 μM). Contractile responses to endothelin-1 were not altered by coronary occlusion alone. Exercise training produced increased tension at comparable levels of intracellular free Ca(2+) concentration in collateral-dependent compared with nonoccluded arteries, indicative of exercise training-enhanced Ca(2+) sensitization. Inhibition of PKC (calphostin C; 1 μM), but not Rho-kinase (Y-27632, 10 μM; or hydroxyfasudil, 30 μM), abolished the training-enhanced endothelin-1-mediated contractile response. Exercise training also increased sensitivity to the PKC activator phorbol 12,13-dibutyrate in collateral-dependent compared with nonoccluded arteries. Taken together, these data reveal that exercise training enhances endothelin-1-mediated contractile responses in collateral-dependent coronary arteries likely via increased PKC-mediated Ca(2+) sensitization.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

C6303
Calphostin C from Cladosporium cladosporioides, ≥90% (HPLC), powder
C44H38O14