EMAIL THIS PAGE TO A FRIEND

The journal of physical chemistry. B

A computational and experimental approach to investigate bepridil binding with cardiac troponin.


PMID 21332124

Abstract

Cardiac troponin is a Ca(2+)-dependent switch for the contraction in heart muscle and a potential target for drugs in the therapy of heart failure. Bepridil is a drug that binds to troponin and increases calcium sensitivity of muscle contraction. Because bepridil has been well studied, it is a good model for analysis by computational and experimental methods. Molecular dynamics (MD) simulations were performed on troponin complexes of different sizes in the presence and absence of bepridil bound within the hydrophobic pocket at the N-terminal domain of troponin C. About 100 ns of simulation trajectory data were generated, which were analyzed using cross-correlation analyses and MMPBSA and MMGBSA techniques. The results indicated that bepridil binding within the hydrophobic pocket of cardiac TnC decreases the interaction of TnC with TnI at both the N-domain of TnC and the C-domain of TnC, and decreases the correlations of motions among the segments of the troponin subunits. The estimated calcium-binding affinities using MMPBSA showed that bepridil has a sensitizing effect for the isolated system of TnC, but loses this effect for the complex. Our experimental measurements of calcium dissociation rates were consistent with that prediction. We also observed that while bepridil enhanced the troponin-tropomyosin-actin-activated ATPase activity of myosin S1 at low calcium concentrations it was slightly inhibitory at high calcium concentrations. Bepridil increases the ATPase activity and force generation in muscle fibers, but its effects appear to depend on the concentration of calcium.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

B5016
Bepridil hydrochloride, powder
C24H34N2O · HCl