EMAIL THIS PAGE TO A FRIEND

Organic & biomolecular chemistry

Sequential catalytic role of bifunctional bicyclic guanidine in asymmetric phospha-Michael reaction.


PMID 21509383

Abstract

The catalytic mechanism and origin of enantioselectivity of bicyclic guanidine-catalyzed phospha-Michael reaction between diphenyl phosphine oxide and β-nitrostyrene were investigated by DFT calculations at M06-2X/cc-pVTZ//M06-2X/cc-pVDZ level in conjunction with the implicit SMD solvation method. The catalyst is found to be involved in all 3 steps of the proposed catalytic cycle, namely (1) tautomerization of phosphine oxide, (2) C-P bond formation and (3) concerted hydrogen transfer. The bifunctional role of the guanidine catalyst is clearly demonstrated in all 3 key steps. Due to the geometry of the bicyclic guanidine catalyst, the preferred orientation of the reactants in the transition state of enantioselective C-P bond forming step favours the R enantiomer, in excellent accord with the observed enantioselectivity. Analysis of various transition states suggests that the asymmetric C-P bond formation is controlled by the hydrogen bonding interaction and steric effect between the catalyst and substrate. Various weaker C-H···X (X = N, O and π) interactions also play a role in stabilizing the key transition states.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

N26806
trans-β-Nitrostyrene, 99%
C8H7NO2