Applied biochemistry and biotechnology

An improved procedure for the purification of catalytically active alkane hydroxylase from Pseudomonas putida GPo1.

PMID 21647685


Bacterial alkane hydroxylases are of high interest for bioremediation applications as they allow some bacteria to grow in oil-contaminated environments. Furthermore, they have tremendous biotechnological potential as they catalyse the stereo- and regio-specific hydroxylation of chemically inert alkanes, which can then be used in the synthesis of pharmaceuticals and other high-cost chemicals. Despite their potential, progress on the detailed characterization of these systems has so far been slow mainly due to the lack of a robust procedure to purify its membrane protein component, monooxygenase AlkB, in a stable and active form. This study reports a new method for isolating milligramme amounts of recombinant Pseudomonas putida GPo1 AlkB in a folded, catalytically active form to purity levels above 90%. AlkB solubilised and purified in the detergent lauryldimethylamine oxide was demonstrated to be active in catalysing the epoxidation reaction of 1-octene with an estimated K (m) value of 0.2 mM.