EMAIL THIS PAGE TO A FRIEND

Acta pharmacologica Sinica

Inhibition of hypoxia-inducible carbonic anhydrase-IX enhances hexokinase II inhibitor-induced hepatocellular carcinoma cell apoptosis.


PMID 21666701

Abstract

The hypoxic condition within large or infiltrative hypovascular tumors produces intracellular acidification, which could activate many signaling pathways and augment cancer cell growth and invasion. Carbonic anhydrase-IX (CA-IX) is an enzyme lowering pH. This study is to examine whether hypoxia induces CA-IX in hepatocellular carcinoma (HCC) cells, and to evaluate its clinical implication in HCC patients. Human HCC cell lines (Huh-7 and HepG2 cells) were used, and cell growth was assessed using MTS assay. CA-IX expression and apoptotic/kinase signaling were evaluated using immunoblotting. The cells were transfected with CA-IX-specific siRNA, or treated with its inhibitor 4-(2-aminoethyl) benzenesulfonamide (CAI#1), and/or the hexokinase II inhibitor, 3-bromopyruvate (3-BP). A clinic pathological analysis of 69 patients who underwent an HCC resection was performed using a tissue array. Incubation of HCC cells under hypoxia (1% O₂, 5% CO₂, 94% N₂) for 36 h significantly increased CA-IX expression level. CAI#1 (400 μmol/L) or CA-IX siRNA (100 μmol/L) did not influence HCC cell growth and induce apoptosis. However, CAI#1 or CA-IX siRNA at these concentrations enhanced the apoptosis induced by 3-BP (100 μmol/L). This enhancement was attributed to increased ER stress and JNK activation, as compared with 3-BP alone. Furthermore, a clinic pathological analysis of 69 HCC patients revealed that tumor CA-IX intensity was inversely related to E-cadherin intensity. Inhibition of hypoxia-induced CA-IX enhances hexokinase II inhibitor-induced HCC apoptosis. Furthermore, CA-IX expression profiles may have prognostic implications in HCC patients. Thus, the inhibition of CA-IX, in combination with a hexokinase II inhibitor, may be therapeutically useful in patients with HCCs that are aggressively growing in a hypoxic environment.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

275247
4-(2-Aminoethyl)benzenesulfonamide, 99%
C8H12N2O2S