EMAIL THIS PAGE TO A FRIEND

Small (Weinheim an der Bergstrasse, Germany)

Anodic deposition of colloidal iridium oxide thin films from hexahydroxyiridate(IV) solutions.


PMID 21678551

Abstract

A facile, in-situ deposition route to stable iridium oxide (IrO(x)·nH(2)O) nanoparticle thin films from [Ir(OH)(6)](2-) solutions is reported. The [Ir(OH)(6)](2-) solution, made by alkaline hydrolysis of [IrCl(6)](2-), is colorless and stable near neutral pH, and forms blue IrO(x)·nH(2)O nanoparticle suspensions once it is adjusted to acidic or basic conditions. IrO(x)·nH(2)O nanoparticle thin films are grown anodically on glassy carbon, fluorine-doped tin oxide, and gold electrodes by electrolyzing [Ir(OH)(6)](2-) solutions at +1.0-1.3 V versus Ag/AgCl. The thickness of the IrO(x)·nH(2)O films can be controlled by varying the concentration of [Ir(OH)(6)](2-) , the deposition potential, and/or the deposition time. These thin films are stable between pH 1 and 13 and have the lowest overpotential (η) for the oxygen evolution reaction (OER) of any yet reported. Near neutral pH, the Tafel slope for the OER at a IrO(x)·nH(2)O film/Au rotating disk electrode was 37-39 mV per decade. The exchange current density for the OER was 4-8 × 10(-10) A cm(-2) at a 4 mC cm(-2) coverage of electroactive Ir.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

206237
Iridium(IV) oxide, 99.9% trace metals basis
IrO2