Archives of biochemistry and biophysics

The role of inhibition of pyruvate kinase in the stimulation of gluconeogenesis by glucagon: a reevaluation.

PMID 2173491


We have reexamined the concept that glucagon controls gluconeogenesis from lactate-pyruvate in isolated rat hepatocytes almost entirely by inhibition of flux through pyruvate kinase, thereby making gluconeogenesis more efficient. 1. We tested and refined the 14C-tracer technique that has previously yielded the opposite conclusion, that is, that inhibition of pyruvate kinase is a relatively unimportant mechanism. The tracer procedure, as used by us, was found to be insensitive to the size of the pyruvate pool, and experiments using modifications of the technique to obviate a number of other potential errors support the earlier conclusion that control of pyruvate kinase is not the predominant mechanism. 2. Any stimulation of formation of glucose that results from inhibition of pyruvate kinase is the consequence of elevation of the steady-state concentrations of phosphoenolpyruvate and all subsequent intermediates in the gluconeogenic pathway. During ongoing stimulation of glucose synthesis by glucagon in isolated hepatocytes, the concentrations of all measured intermediate compounds between phosphoenolpyruvate and glucose were elevated except triose phosphates and fructose 1,6-bisphosphate. The failure of these compounds to rise above control levels indicates that not all gluconeogenic reactions beyond pyruvate kinase were accelerated thermodynamically as would occur with predominant control at pyruvate kinase. We conclude, therefore, that although glucagon inhibits flux through the pyruvate kinase reaction, this does not account for most of the stimulation of gluconeogenesis. Major control sites are also within the pyruvate-phosphoenolpyruvate segment and the fructose 1,6-bisphosphate cycle.