The journal of physical chemistry. B

A transferable force field to predict phase equilibria and surface tension of ethers and glycol ethers.

PMID 21800821


We propose a new transferable force field to simulate phase equilibrium and interfacial properties of systems involving ethers and glycol ethers. On the basis of the anisotropic united-atom force field, only one new group is introduced: the ether oxygen atom. The optimized Lennard-Jones (LJ) parameters of this atom are identical whatever the molecule simulated (linear ether, branched ether, cyclic ether, aromatic ether, diether, or glycol ether). Accurate predictions are achieved for pure compound saturated properties, critical properties, and surface tensions of the liquid-vapor interface, as well as for pressure-composition binary mixture diagrams. Multifunctional molecules (1,2-dimethoxyethane, 2-methoxyethanol, diethylene glycol) have also been studied using a recently proposed methodology for the calculation of the intramolecular electrostatic energy avoiding the use of additional empirical parameters. This new force field appears transferable for a wide variety of molecules and properties. It is furthermore worth noticing that binary mixtures have been simulated without introducing empirical binary parameters, highlighting also the transferability to mixtures. Hence, this new force field gives future opportunities to simulate complex systems of industrial interest involving molecules with ether functions.