Neuroscience letters

Up-regulation of spinal glutamate transporters contributes to anti-hypersensitive effects of valproate in rats after peripheral nerve injury.

PMID 21802494


Valproate produces analgesia in animals and humans, however, its mechanisms of action are yet unknown. The present study examined effects of repeated administration of valproate on behavioral hypersensitivity and expression of glutamate transporter-1 (GLT-1) and glutamate-aspartate transporter (GLAST) in the spinal dorsal horn in rats after L5-L6 spinal nerve ligation (SNL). SNL significantly reduced mechanical withdrawal threshold and expression of GLT-1 and GLAST in the spinal dorsal horn. Repeated oral administration of valproate reduced hypersensitivity, restored down-regulated expression of GLT-1 and GLAST in the spinal dorsal horn, and enhanced analgesia from the glutamate transporter activator riluzole. This analgesia from valproate was blocked by the selective GLT-1 blocker dihydrokainic acid (DHK). These data suggest that valproate restores down-regulated expression of glutamate transporters in the spinal cord to presumably reduce glutamate signaling and to reduce hypersensitivity after nerve injury, and that combination of valproate with riluzole produces enhanced analgesia which relies on the spinal glutamate transporters.