EMAIL THIS PAGE TO A FRIEND

Drug metabolism and disposition: the biological fate of chemicals

CYP2C19 progress curve analysis and mechanism-based inactivation by three methylenedioxyphenyl compounds.


PMID 21908684

Abstract

Several in vitro criteria were used to assess whether three methylenedioxyphenyl (MDP) compounds, the isoquinoline alkaloids bulbocapnine, canadine, and protopine, are mechanism-based inactivators of CYP2C19. The recently reported fluorometric CYP2C19 progress curve analysis approach was applied first to determine whether these alkaloids demonstrate time-dependent inhibition. In this experiment, bulbocapnine, canadine, and protopine displayed time dependence and saturation in their inactivation kinetics with K(I) and k(inact) values of 72.4 ± 14.7 μM and 0.38 ± 0.036 min(-1), 2.1 ± 0.63 μM and 0.18 ± 0.015 min(-1), and 7.1 ± 2.3 μM and 0.24 ± 0.021 min(-1), respectively. Additional studies were performed to determine whether other specific criteria for mechanism-based inactivation were fulfilled: NADPH dependence, irreversibility, and involvement of a catalytic step in the enzyme inactivation. CYP2C19 activity was not significantly restored by dialysis when it had been inactivated by the alkaloids in the presence of a NADPH-regenerating system, and a metabolic-intermediate complex-associated increase in absorbance at approximately 455 nm was observed. In conclusion, the CYP2C19 progress curve analysis method revealed time-dependent inhibition by these alkaloids, and additional experiments confirmed its quasi-irreversible nature. This study revealed that the CYP2C19 progress curve analysis method is useful for identifying novel mechanism-based inactivators and yields a wealth of information in one run. The alkaloids bulbocapnine, canadine, and protopine, present in herbal medicines, are new mechanism-based inactivators and the first MDP compounds exhibiting quasi-irreversible inactivation of CYP2C19.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

P8489
Protopine hydrochloride, ≥98%, solid
C20H19NO5·HCl