EMAIL THIS PAGE TO A FRIEND

Proceedings of the National Academy of Sciences of the United States of America

Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum.


PMID 21949379

Abstract

Many species of Proteobacteria communicate by using LuxI-LuxR-type quorum-sensing systems that produce and detect acyl-homoserine lactone (acyl-HSL) signals. Most of the known signals are straight-chain fatty acyl-HSLs, and evidence indicates that LuxI homologs prefer fatty acid-acyl carrier protein (ACP) over fatty acyl-CoA as the acyl substrate for signal synthesis. Two related LuxI homologs, RpaI and BtaI from Rhodopseudomonas palustris and photosynthetic stem-nodulating bradyrhizobia, direct production of the aryl-HSLs p-coumaroyl-HSL and cinnamoyl-HSL, respectively. Here we report that BjaI from the soybean symbiont Bradyrhizobium japonicum USDA110 is closely related to RpaI and BtaI and catalyzes the synthesis of isovaleryl-HSL (IV-HSL), a branched-chain fatty acyl-HSL. We show that IV-HSL induces expression of bjaI, and in this way IV-HSL functions like many other acyl-HSL quorum-sensing signals. Purified histidine-tagged BjaI was an IV-HSL synthase, which was active with isovaleryl-CoA but not detectably so with isovaleryl-ACP. This suggests that the RpaI-BtaI-BjaI subfamily of acyl-HSL synthases may use CoA- rather than ACP-linked substrates for acyl-HSL synthesis. The bjaI-linked bjaR(1) gene is involved in the response to IV-HSL, and BjaR(1) is sensitive to IV-HSL at concentrations as low as 10 pM. Low but sufficient levels of IV-HSL (about 5 nM) accumulate in B. japonicum culture fluid. The low levels of IV-HSL synthesis have likely contributed to the fact that the quorum-sensing signal from this bacterium has not been described elsewhere.