EMAIL THIS PAGE TO A FRIEND

ACS applied materials & interfaces

Methyl salicylate: a reactive chemical warfare agent surrogate to detect reaction with hypochlorite.


PMID 21981047

Abstract

Methyl salicylate (MeS) has a rich history as an inert physical simulant for the chemical warfare agents sulfur mustard and soman, where it is used extensively for liquid- and vapor-permeation testing. Here we demonstrate possible utility of MeS as a reactivity simulant for chlorine-based decontaminants. In these experiments MeS was reacted with sodium hypochlorite varying stoichiometry, temperature, reaction time, and pH. No colored oxidation products were observed; however, chlorination of the aromatic ring occurred ortho (methyl 3-chlorosalicylate) and para (methyl 5-chlorosalicylate) to the position bearing the -OH group in both the mono- and disubstituted forms. The monosubstituted para product accumulated initially, and the ortho and 3,5-dichloro products formed over the next several hours. Yields from reactions conducted below pH 11 declined rapidly with decreasing pH. Reactions run at 40 °C produced predominantly para substitution, while those run at 0 °C produced lower yields of ortho- and para-substituted products. Reactions were also carried out on textile substrates of cotton, 50/50 nylon-cotton, and a meta aramid. The textile data broadly reproduced reaction times and stoichiometry observed in the liquid phase, but are complicated by physical and possibly chemical interactions with the fabric. These data indicate that, for hypochlorite-containing neutralizing agents operating at strongly alkaline pH, one can expect MeS to react stoichiometrically with the hypochlorite it encounters. This suggests utility of MeS in lieu of such highly hazardous surrogates as monochloroalkyl sulfides as a simulant for threat scenarios involving the stoichiometric decomposition of sulfur mustard. Specifically, the extent of coverage of the simulant on a fabric by the neutralizing agent can be directly measured. Similar reactivity toward other halogen oxidizing agents is likely but remains to be demonstrated.

Related Materials