EMAIL THIS PAGE TO A FRIEND

ACS applied materials & interfaces

Modifying Fe3O4-functionalized nanoparticles with N-halamine and their magnetic/antibacterial properties.


PMID 22008460

Abstract

Magnetic/antibacterial bifunctional nanoparticles were fabricated through the immobilization of antibacterial N-halamine on silica-coated Fe(3)O(4)-decorated poly(styrene-co-acrylate acid) (PSA) nanoparticles. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDX), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The N-halamine was developed from the precursor 5,5-dimethylhydantoin (DMH) by chlorination treatment, and experimental results showed that the loading amount of DMH on the silica-coated Fe(3)O(4)-decorated poly(styrene-co-acrylate acid) nanoparticles was adjustable. The as-synthesized nanoparticles exhibited superparamagnetic behavior and had a saturation magnetization of 18.93 emu g(-1). Antibacterial tests showed that the resultant nanoparticles displayed enhanced antibacterial activity against both Gram-positive and Gram-negative bacteria compared with their bulk counterparts.