EMAIL THIS PAGE TO A FRIEND

Acta biomaterialia

Electrochemical microelectrodes for improved spatial and temporal characterization of aqueous environments around calcium phosphate cements.


PMID 22019519

Abstract

Calcium phosphate compounds can potentially influence cellular fate through ionic substitutions. However, to be able to turn such solution-mediated processes into successful directors of cellular response, a perfect understanding of the material-induced chemical reactions in situ is required. We therefore report on the application of home-made electrochemical microelectrodes, tested as pH and chloride sensors, for precise spatial and temporal characterization of different aqueous environments around calcium phosphate-based biomaterials prepared from α-tricalcium phosphate using clinically relevant liquid to powder ratios. The small size of the electrodes allowed for online measurements in traditionally inaccessible in vitro environments, such as the immediate material-liquid interface and the interior of curing bone cement. The kinetic data obtained has been compared to theoretical sorption models, confirming that the proposed setup can provide key information for improved understanding of the biochemical environment imposed by chemically reactive biomaterials.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

206237
Iridium(IV) oxide, 99.9% trace metals basis
IrO2