EMAIL THIS PAGE TO A FRIEND

IEEE transactions on bio-medical engineering

Effective hydrodynamic shaping of sample streams in a microfluidic parallel-plate flow-assay device: matching whole blood dynamic viscosity.


PMID 22020664

Abstract

We report the development of an aqueous buffer system tailored to the fluidic and hemodynamic requirements of our recently reported microfluidic platelet dynamic assay device, which uses hydrodynamic focusing to "shape" a blood sample into a thin flowing layer adjacent to its protein-functionalized surface. By matching the dynamic viscosity of whole blood (3.13 ± 0.08 mPa·s, from healthy donors), the selected buffer minimizes interfacial fluid mixing and better controls shear rate within the device, permitting platelet/protein-surface interaction assays with as little as 50 μL of whole blood. Buffers containing the viscosity-enhancing components bovine serum albumin (BSA), gelofusine/glycine, or histopaque (Ficoll gradient solution) were found not to activate platelets when incubated with blood at concentrations up to 50%, as assessed by flow cytometry quantitation of P-selectin expression and αIIbβ (3) activation. In contrast, glycerol-based buffer activated platelets (two-fold increase in P-selectin levels) at concentrations as low as 10% by volume. BSA- and gelofusine/glycine-based buffers were problematic in preparation and use, and therefore, were not used beyond initial characterization. The histopaque solution selected as the best choice for flow studies stabilizes sample contact with the device's thrombogenic surface, does not activate platelets, and does not interfere with the action of agonists added to deliberately activate platelets.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

D9268
Diatrizoic acid
C11H9I3N2O4
S4506
Sodium diatrizoate hydrate, ≥98.0%
C11H8I3N2NaO4 · xH2O