EMAIL THIS PAGE TO A FRIEND

Biological trace element research

Effects of added CeCl3 on resistance of fifth-instar larvae of silkworm to Bombyx mori nucleopolyhedrovirus infection.


PMID 22076733

Abstract

One of the most important agents causing lethal disease in the silkworm is the Bombyx mori nucleopolyhedrovirus (BmNPV), while low-dose rare earths are demonstrated to increase immune capacity in animals. However, very little is known about the effects of added CeCl(3) on decreasing BmNPV infection of silkworm. The present study investigated the effects of added CeCl(3) to an artificial diet on resistance of fifth-instar larvae of silkworm to BmNPV infection. Our findings indicated that added CeCl(3) significantly decreased inhibition of growth and mortality of fifth-instar larvae caused by BmNPV infection. Furthermore, the added CeCl(3) obviously decreased lipid peroxidation level and accumulation of reactive oxygen species such as O(2)(-), H(2)O(2), (·)OH, and NO and increased activities of the antioxidant enzymes including superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, ascorbate, and glutathione contents in the BmNPV-infected fifth-instar larvae. In addition, the added CeCl(3) could significantly promote acetylcholine esterase activity and attenuate the activity of inducible nitric oxide synthase in the BmNPV-infected fifth-instar larvae. These findings suggested that added CeCl(3) may relieve oxidative damage and neurotoxicity of silkworm caused by BmNPV infection via increasing antioxidant capacity and acetylcholine esterase activity.