Journal of chromatography. A

Phase transfer membrane supported liquid-liquid-liquid microextraction combined with large volume sample injection capillary electrophoresis-ultraviolet detection for the speciation of inorganic and organic mercury.

PMID 22098933


In this paper, a novel sample pretreatment technique termed phase transfer based liquid-liquid-liquid microextraction (PT-LLLME) was proposed for the simultaneous extraction of inorganic and organic mercury species. In PT-LLLME, an intermediate solvent (acetonitrile) was added into the donor phase to improve the contacting between target mercury species and complexing reagent. Meanwhile, a membrane supported (MS)-LLLME unit was designed to realize the PT-LLLME procedure. By using nylon membrane as supporting carrier, larger than 50 μL of acceptor solution could be hung up. Following PT/MS-LLLME, the acceptor solutions were directly analyzed by large volume sample stacking capillary electrophoresis/ultraviolet detection (LVSS-CE/UV). Accordingly, a new method of PT/MS-LLLME combined with LVSS-CE/UV was developed for the simultaneous speciation of inorganic and organic mercury species. Parameters affecting the extraction efficiency of PT/MS-LLLME were investigated in details. Under the optimized conditions, enrichment factors (EFs) ranging from 160- to 478-fold were obtained for the extraction of target mercury species by PT/MS-LLLME. By combining PT/MS-LLLME with LVSS-CE/UV, EFs were magnified up to 12,138-fold and the limits of detection (at a signal-to-noise ratio of 3) were at sub ppb level. The established approach of PT/MS-LLLME-LVSS-CE/UV was successfully applied to simultaneous determination of inorganic and organic mercury species in biological samples and environmental water samples.

Related Materials