EMAIL THIS PAGE TO A FRIEND

The Journal of endocrinology

Methylseleninic acid is a novel suppressor of aromatase expression.


PMID 22128327

Abstract

Elevated circulating estrogen levels, as a result of increased peripheral aromatization of androgens by aromatase, have been indicated to underlie the association between obesity and a higher risk of breast cancer in postmenopausal women. Although aromatase inhibitors have been used as a first-line therapy for estrogen receptor-positive breast cancer in postmenopausal women, their potential as breast cancer chemopreventive agents has been limited due to toxicities and high costs. It is therefore imperative to develop new aromatase-inhibiting/suppressing agents with lower toxicities and lower costs for breast cancer chemoprevention, especially in obese postmenopausal women. The expression of the aromatase gene, CYP19, is controlled in a tissue-specific manner by the alternate use of different promoters. In obese postmenopausal women, increased peripheral aromatase is primarily attributed to the activity of the glucocorticoid-stimulated promoter, PI.4, and the cAMP-stimulated promoter, PII. In the present study, we show that methylseleninic acid (MSA), a second-generation selenium compound, can effectively suppress aromatase activation by dexamethasone, a synthetic glucocorticoid, and forskolin, a specific activator of adenylate cyclase. Unlike the action of aromatase inhibitors, MSA suppression of aromatase activation is not mediated via direct inhibition of aromatase enzymatic activity. Rather, it is attributable to a marked downregulation of promoters PI.4- and PII-specific aromatase mRNA expression, and thereby a reduction of aromatase protein. Considering the low-cost and low-toxicity nature of MSA, our findings provide a strong rationale for the further development of MSA as a breast cancer chemopreventive agent for obese postmenopausal women.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

541281
Methaneseleninic acid, 95%
CH4O2Se