Biochemical and biophysical research communications

Fe(III) and Fe(II) ions different effects on Enterococcus hirae cell growth and membrane-associated ATPase activity.

PMID 22166211


Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reduction potential (E(h)) from positive values to negative ones (down to ∼-200 mV). In this study, iron (III) ions (Fe(3+)) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe(2+)) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E(h) values during bacterial growth. It was revealed that ATPase activity with and without N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of the F(0)F(1)-ATPase, increased in the presence of even low Fe(3+) concentration (0.05 mM) but decreased in the presence of Fe(2+). It was established that Fe(3+) and Fe(2+) both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe(2+) with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F(0)F(1)) MS116 strains but they were different with Fe(3+) and Fe(2+). It is suggested that the effects of Fe(3+) might be due to interaction of these ions with F(0)F(1) or there might be a Fe(3+)-dependent ATPase different from F(0)F(1) in these bacteria that is active even in the presence of DCCD. Fe(2+) inhibits E. hirae cell growth probably by strong effect on E(h) leading to changes in F(0)F(1) and decreasing its activity.