EMAIL THIS PAGE TO A FRIEND

American journal of physiology. Heart and circulatory physiology

Mineralocorticoids participate in the reduced vascular reactivity of pregnant rats.


PMID 22198172

Abstract

The renin-angiotensin-aldosterone (RAA) system is markedly activated in pregnancy. We evaluated if mineralocorticoid receptors (MR), a major component of the RAA system, are involved in the reduced vascular reactivity associated with pregnancy. Canrenoate (MR antagonist; 20 mg·kg(-1)·day(-1)) was administered to nonpregnant (NP) rats for 7 days and to pregnant rats from day 15 to 22 of gestation. These were killed on day 17, 19, or 22 of gestation and, for NP rats, after 7 days treatment. Constrictor responses to phenylephrine (PhE) and KCl were measured in endothelium-denuded thoracic aortic rings under the influence of modulators of potassium (activators) and calcium (blocker) channels. Responses to the constrictors were blunted from days 17 to 22 of gestation. Although canrenoate increased responses to PhE and KCl, it did not reverse their blunted responses in gestation. NS-1619 and cromakalim (respectively, high-conductance calcium-activated potassium channels and ATP-sensitive potassium channel activators) diminished responses to both PhE and KCl. Inhibition by NS-1619 on responses to both agonists was decreased under canrenoate treatment in NP, but the reduced influence of NS-1619 during gestation was reversed by the mineralocorticoid antagonist. Cromakalim reduced the response to PhE significantly in the pregnant groups; this effect was enhanced by canrenoate. Finally, nifedipine (calcium channel blocker) markedly reduced KCl responses but to a lesser extent at the end of pregnancy, an inhibiting effect that was increased with canrenoate treatment. These data demonstrate that treating rats with a MR antagonist increased vascular reactivity but that it differentially affected potassium and calcium channel activity in aortas of NP and pregnant animals. This suggests that aldosterone is one of the components involved in vascular adaptations to pregnancy.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

C7287
Canrenoic acid potassium salt, powder
C22H30KO4
C1055
Cromakalim
C16H18N2O3
N170
NS 1619, powder
C15H8F6N2O2