Journal of environmental radioactivity

Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(VI) from aqueous media.

PMID 22304995


A novel adsorbent poly(methacrylic acid)-grafted chitosan/bentonite (CTS-g-PMAA/Bent) composite was prepared through graft copolymerization reaction of methacrylic acid and chitosan in the presence of bentonite (Bent) and N,N'- methylenebisacrylamide as a crosslinker. The composite was well characterized using FTIR, XRD, XPS, SEM-EDS, surface area and zeta potential analyzers. The adsorption behavior of the composite toward uranium(VI) from aqueous media was studied under varying operating conditions of pH, concentration of U(VI), contact time, adsorbent dose and temperature. The optimum pH range for U(VI) adsorption was 5.5 at 30 °C. Concentration and temperature dependent rate constants were evaluated using pseudo-second-order kinetic model. The equilibrium data were correlated with the Langmuir isotherm model with an endothermic behavior. The equilibrium U(VI) sorption capacity was estimated to be 117.2 mg g(-1) at 30 °C. For the quantitative recovery of 100 mg L(-1) U(VI) from 1.0 L simulated nuclear industry wastewater, a minimum adsorbent dosage of 2.0 g CTS-g-PMAA/Bent was required. The calculated energy of activation (E(a) = 47.83 kJ/mol) was positively correlated with chemical adsorption process. The values of enthalpy, entropy and free energy of activation were calculated to explain the nature of adsorption process. Adsorption-desorption experiments over four cycles illustrate the feasibility of the repeated uses of this composite for the extraction of U(VI) from aqueous solutions.

Related Materials

Product #



Molecular Formula

Add to Cart

Potassium persulfate, ACS reagent, ≥99.0%