EMAIL THIS PAGE TO A FRIEND

Journal of bioenergetics and biomembranes

Enhancement of hexokinase II inhibitor-induced apoptosis in hepatocellular carcinoma cells via augmenting ER stress and anti-angiogenesis by protein disulfide isomerase inhibition.


PMID 22350012

Abstract

3-bromopyruvate (3-BP), a hexokinase (HK) II inhibitor, promotes tumor cell death by inducing endoplasmic reticulum (ER) stress in human hepatocellular carcinoma (HCC) cell lines. Protein disulfide isomerase (PDI) is an essential folding catalyst and attenuates ER stress by folding the misfolded proteins. We examined if PDI is expressed in hypoxic HCC cells, and evaluated its inhibition potentiated HK II inhibitor-induced ER stress in hypoxic HCC cells. HCC apoptotic cell death was assessed by DAPI staining and apoptotic signaling pathways were explored by immunoblot analysis. An in vivo model of HCC was established in C3H mice intradermally with implanted MH134 cells. 3-BP with/without a PDI inhibitor (bacitracin) was subsequently administered. The anti-tumor efficacies were evaluated by measuring tumor volumes and quantifying apoptotic cells and microvessel densities (MVDs). HCC cells were found to express PDI in a hypoxia-inducible manner. The simultaneous treatment of bacitracin and 3-BP enhanced 3-BP-induced apoptosis. This enhancement was attributed to increased ER stress and JNK activation compared to the cells treated with just 3-BP. In an in vivo model of HCC, tumor growth was significantly suppressed in mice co-treated with bacitracin and 3-BP, and the percentages of apoptotic cells significantly increased and MVDs significantly decreased. These results demonstrated that PDI was induced in hypoxic HCC tissue and that PDI inhibition enhanced HK II inhibitor-induced anti-tumor efficacy synergistically via augmenting ER stress and anti-angiogenesis in vivo. Thus, blockage of PDI activity in combination with HK II inhibitor may be therapeutically useful in HCCs.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

16490
Bromopyruvic acid, ≥98.0%
C3H3BrO3