EMAIL THIS PAGE TO A FRIEND

Neuron

Sound-driven synaptic inhibition in primary visual cortex.


PMID 22365553

Abstract

Multimodal objects and events activate many sensory cortical areas simultaneously. This is possibly reflected in reciprocal modulations of neuronal activity, even at the level of primary cortical areas. However, the synaptic character of these interareal interactions, and their impact on synaptic and behavioral sensory responses are unclear. Here, we found that activation of auditory cortex by a noise burst drove local GABAergic inhibition on supragranular pyramids of the mouse primary visual cortex, via cortico-cortical connections. This inhibition was generated by sound-driven excitation of a limited number of cells in infragranular visual cortical neurons. Consequently, visually driven synaptic and spike responses were reduced upon bimodal stimulation. Also, acoustic stimulation suppressed conditioned behavioral responses to a dim flash, an effect that was prevented by acute blockade of GABAergic transmission in visual cortex. Thus, auditory cortex activation by salient stimuli degrades potentially distracting sensory processing in visual cortex by recruiting local, translaminar, inhibitory circuits.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

SML0594 CGP 55845 hydrochloride, ≥98% (HPLC)
C18H22Cl2NO3P · HCl