EMAIL THIS PAGE TO A FRIEND

Chemistry & biology

Elucidation of Piericidin A1 biosynthetic locus revealed a thioesterase-dependent mechanism of α-pyridone ring formation.


PMID 22365607

Abstract

Piericidins are a class of α-pyridone antibiotics that inhibit mitochondrial respiratory chain and exhibit antimicrobial, antifungal, and antitumor activities. Sequential analysis of Streptomyces piomogeues var. Hangzhouwanensis genome revealed six modular polyketide synthases, an amidotransferase, two methyltransferases, and a monooxygenase for piericidin A1 production. Gene functional analysis and deletion results provide overview of the biosynthesis pathway. Furthermore, in vitro characterization of the terminal polyketide synthase module with the thioesterase domain using β-ketoacyl substrates was performed. That revealed a pathway where the α-pyridone ring formation is dependent on hydrolysis of the product β, δ-diketo carboxylic acid by the C-terminal thioesterase followed by amidation and cyclization. These findings set the stage to investigate unusual enzymatic mechanisms in α-pyridone antibiotics biosynthesis, provide a foundation for genome mining of α-pyridone antibiotics, and produce analogs by molecular engineering.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

P4368
Piericidin A from microbial source, >95% (HPLC), DMSO solution
C25H37NO4