Journal of food science

Change of volatile compounds in fresh fish meat during ice storage.

PMID 22416694


The change of volatile compounds in fresh fish meat during 3- to 4-d ice storage was investigated for several fishes using an electronic nose system and a gas chromatography-mass spectrometer (GC/MS) with headspace solid-phase micro-extraction (SPME). Principal component analyses for samples using the electronic nose system revealed that the increase of some volatile compounds during storage was rapid in sardine (Sardinops melanostictus), jack mackerel (Trachurus japonicus), and chub mackerel (Scomber japonicus); moderate in yellowtail (Seriola quinqueradiata), skipjack (Katsuwonus pelamis), and young oriental bluefin tuna (Thunnus thynnus). In contrast to these fishes, the change was little in "white meat" fishes such as red seabream (Chrysophrys major), Japanese seabass (Lateolabrax japonicus), flatfish (Paralichthys olivaceus), puffer (Lagocephalus wheeleri), and bartail flathead (Platycephalus indicus). SPME-GC/MS analysis showed that some aldehydes and alcohols such as 1-heptanol, (E)-2-octenal, (E)-2-hexenal, 1-pentanol, (E,E)-2,4-heptadienal,2,4-hexadienal, 1-hexanol, 4-heptenal, and so forth increased rapidly in jack mackerel and chub mackerel, slowly in skipjack, and a little in red seabream and puffer during the storage. The increase of these compounds was considered to have an effect on the change of electronic nose response. Hexanal was a dominant compound increased from the beginning of the storage in jack mackerel. The increase of volatile compounds was little in red seabream and puffer. The increase of these aldehydes and alcohols was thought to be an appropriate marker for monitoring the freshness of "fresh" fish except for white meat fish. The results of this study are ready to apply for preventing fishy off-flavor of fisheries products. Lipid oxidative derivatives other than trimethylamine contributed to fresh fish flavor; therefore, to prevent lipid oxidation seemed important.