Environmental technology

Preparation of platinum- and silver-incorporated TiO2 coatings in thin-film photoreactor for the photocatalytic decomposition of o-cresol.

PMID 22439567


Platinum-incorporated TiO2 (Pt-TiO2) and silver-incorporated TiO2 (Ag-TiO2) coatings on sapphire tubes of a thin-film photoreactor were prepared using a photoreduction process. Results of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) revealed that the Ag-TiO2 coatings consisted of a mixture of Ag2O, Ag and TiO2 particles, owing to the partial oxidization of silver particles on the TiO2 coatings, while the Pt-TiO2 coating contained a mixture of Pt and TiO2 particles. Diffuse reflectance UV-Vis spectra (DRS) showed that metal particles (Ag or Pt) incorporated into the TiO2 coatings promoted optical absorption in the visible region and made it possible for the coatings to be excited by visible light. Photoluminescence (PL) spectra showed that the PL intensity of the Pt-TiO2 coating was lower than that of the Ag-TiO2 and TiO2 coatings, indicating that the Pt-TiO2 coating had a higher efficiency of charge carrier trapping, immigration and transfer, which subsequently promoted the pseudo-first-order rate constants after the UV/TiO2 process. The Pt-TiO2 coatings for the photocatalytic decomposition of o-cresol under UV light irradiation corresponded to a higher pseudo-first-order rate constant (k) of 0.02 min(-1) when compared with the photocatalytic decomposition rates of pure TiO2 coatings (k = 0.0062 min(-1)) and Ag-TiO2 coatings (k = 0.01 min(-1)). The experimental results also indicated that the photodegradation rate of the Pt-TiO2 coating under visible light irradiation was significantly higher than the photodegradation rates of the Ag-TiO2 and pure TiO2 coatings.

Related Materials