Journal of toxicology and environmental health. Part A

Expression analysis of hepatic mitochondria-related genes in mice exposed to acrylamide and glycidamide.

PMID 22480170


Acrylamide (AA) is an industrial chemical that has been extensively investigated for central nervous system (CNS), reproductive, and genetic toxicity. However, AA effects on the liver, a major organ of drug metabolism, have not been adequately explored. In addition, the role of mitochondria in AA-mediated toxicity is still unclear. Changes in expression levels of genes associated with hepatic mitochondrial function of male transgenic Big Blue (BB) mice administered 500 mg/L AA or an equimolar concentration (600 mg/L) of its reactive metabolite glycidamide (GA) in drinking water for 3 and 4 wk, respectively, were examined. Transcriptional profiling of 542 mitochondria-related genes indicated a significant downregulation of genes associated with the 3-beta-hydroxysteroid dehydrogenase family in AA- and GA-treated mice, suggesting a possible role of both chemicals in altering hepatic steroid metabolism in BB mice. In addition, genes associated with lipid metabolism were altered by both treatments. Interestingly, only the parental compound (AA) significantly induced expression levels of genes associated with oxidative phosphorylation, in particular ATP synthase, which correlated with elevated ATP levels, indicating an increased energy demand in liver during AA exposure. Acrylamide-treated mice also showed significantly higher activity of glutathione S-transferase in association with decreased levels of reduced glutathione (GSH), which may imply an enhanced rate of conjugation of AA with GSH in liver. These results suggest different hepatic mechanisms of action of AA and GA and provide important insights into the involvement of mitochondria during their exposures.

Related Materials

Product #



Molecular Formula

Add to Cart

Glycidamide, analytical standard