EMAIL THIS PAGE TO A FRIEND

Cell biology international

Expression of the polyalanine expansion mutant of nuclear poly(A)-binding protein induces apoptosis via the p53 pathway.


PMID 22519734

Abstract

The PABPN1 [nuclear poly(A)-binding protein 1] is ubiquitous, binds to the nascent mRNA transcript and controls the poly(A) tract elongation process in multicellular organisms. Expansion of GCG repeats that encode first 6 of the 10 alanine residues of a polyalanine tract at the N-terminus of wild-type PABPN1 to 12-17 alanine residues causes aggregation of the protein and cell death. Patients with the adult onset autosomal dominant OPMD (oculopharyngeal muscular dystrophy) carry the GCG expansion mutation in their PABPN1 gene. The symptoms of OPMD include drooping eye lids and difficulty swallowing. The severity of symptoms increases with the length of the expansion. We have investigated the mechanism of cell death in HeLa and HEK-293 (human embryonic kidney) cultured cells expressing the mutant PABPN1 with a polyalanine tract containing 17 alanine residues (PABPN1-A17). In cells expressing PABPN1-A17, the abundance of pro-apoptotic proteins, p53, PUMA (p53 up-regulated modulator of apoptosis) and Noxa, are up-regulated. This was associated with the redistribution of p53 to the nucleus and mitochondria. Concomitantly Bax was translocated to the mitochondria, followed by the release of cytochrome c and the cleavage of caspase 3. Furthermore, blocking p53-mediated transcription using pifithrin significantly reduced apoptosis. Our findings suggest a key role of p53-mediated apoptosis in death of cells expressing the polyalanine expansion mutant of PABPN1.