EMAIL THIS PAGE TO A FRIEND

Journal of the American Chemical Society

Gas-phase studies of purine 3-methyladenine DNA glycosylase II (AlkA) substrates.


PMID 22554094

Abstract

3-Methyladenine DNA glycosylase II (AlkA) is an enzyme that cleaves a wide range of damaged bases from DNA. The gas-phase thermochemical properties (tautomerism, acidity, and proton affinity) have been measured and calculated for a series of AlkA purine substrates (7-methyladenine, 7-methylguanine, 3-methyladenine, 3-methylguanine, purine, 6-chloropurine, xanthine) that have not been heretofore examined. The damaged nucleobases are found to be more acidic than the normal nucleobases adenine and guanine. Because of this increased acidity, the damaged bases would be expected to be more easily cleaved from DNA by AlkA (their conjugate bases should be better leaving groups). We find that the gas-phase acidity correlates to the AlkA excision rates, which lends support to an AlkA mechanism wherein the enzyme provides a nonspecific active site, and nucleobase cleavage is dependent on the intrinsic N-glycosidic bond stability.