Molecular cancer therapeutics

Chemosensitization of cancer cells by KU-0060648, a dual inhibitor of DNA-PK and PI-3K.

PMID 22576130


DNA double-strand breaks (DSB) are the most cytotoxic lesions induced by topoisomerase II poisons. Nonhomologous end joining (NHEJ) is a major pathway for DSB repair and requires DNA-dependent protein kinase (DNA-PK) activity. DNA-PK catalytic subunit (DNA-PKcs) is structurally similar to PI-3K, which promotes cell survival and proliferation and is upregulated in many cancers. KU-0060648 is a dual inhibitor of DNA-PK and PI-3K in vitro. KU-0060648 was investigated in a panel of human breast and colon cancer cells. The compound inhibited cellular DNA-PK autophosphorylation with IC(50) values of 0.019 μmol/L (MCF7 cells) and 0.17 μmol/L (SW620 cells), and PI-3K-mediated AKT phosphorylation with IC(50) values of 0.039 μmol/L (MCF7 cells) and more than 10 μmol/L (SW620 cells). Five-day exposure to 1 μmol/L KU-0060648 inhibited cell proliferation by more than 95% in MCF7 cells but only by 55% in SW620 cells. In clonogenic survival assays, KU-0060648 increased the cytotoxicity of etoposide and doxorubicin across the panel of DNA-PKcs-proficient cells, but not in DNA-PKcs-deficient cells, thus confirming that enhanced cytotoxicity was due to DNA-PK inhibition. In mice bearing SW620 and MCF7 xenografts, concentrations of KU-0060648 that were sufficient for in vitro growth inhibition and chemosensitization were maintained within the tumor for at least 4 hours at nontoxic doses. KU-0060648 alone delayed the growth of MCF7 xenografts and increased etoposide-induced tumor growth delay in both in SW620 and MCF7 xenografts by up to 4.5-fold, without exacerbating etoposide toxicity to unacceptable levels. The proof-of-principle in vitro and in vivo chemosensitization with KU-0060648 justifies further evaluation of dual DNA-PK and PI-3K inhibitors.

Related Materials

Product #



Molecular Formula

Add to Cart

KU-0060648, ≥98% (HPLC)