Environmental science & technology

Improved characterization of gas-particle partitioning for per- and polyfluoroalkyl substances in the atmosphere using annular diffusion denuder samplers.

PMID 22606993


Gas-phase perfluoroalkyl carboxylic acids (PFCAs) sorb strongly on filter material (i.e., GFF, QFF) used in conventional high volume air samplers, which results in an overestimation of the particle-phase concentration. In this study, we investigated an improved technique for measuring the gas-particle partitioning of per- and polyfluoroalkyl substances (PFASs) using an annular diffusion denuder sampler. Samples were analyzed for 7 PFAS classes [i.e., PFCAs, perfluoroalkane sulfonic acids (PFSAs), fluorotelomer alcohols (FTOHs), fluorotelomer methacrylates (FTMACs), fluorotelomer acrylates (FTACs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs)]. The measured particulate associated fraction (Φ') using the diffusion denuder sampler generally followed the trend FTACs (0%) < FTOHs (~8%) < FOSAs (~21%) < PFSAs (~29%) < FOSEs (~66%), whereas the Φ' of the C(8)-C(18) PFCAs increased with carbon chain length, and ranged from 6% to 100%. The ionizability of some PFASs, when associated with particles, is an important consideration when calculating the gas-particle partitioning coefficient as both ionic and neutral forms can be present in the particles. Here we differentiate between a gas-particle partitioning coefficient for neutral species, K(p), and one that accounts for both ionic and neutral species of a compound, K(p)'. The measured K(p)' for PFSAs and PFCAs was 4-5 log units higher compared to the interpolated K(p) for the neutral form only. The measured K(p)' can be corrected (to apply to the neutral form only) with knowledge of the pK(a) of the chemical and the pH of the condensed medium ("wet" particle or aqueous aerosol). The denuder-based sampling of PFASs has yielded a robust data set that demonstrates the importance of atmospheric pH and chemical pK(a) values in determining gas-particle partitioning of PFASs.

Related Materials

Product #



Molecular Formula

Add to Cart

Perfluorooctane, 98%