EMAIL THIS PAGE TO A FRIEND

Inflammation

Stevioside suppressed inflammatory cytokine secretion by downregulation of NF-κB and MAPK signaling pathways in LPS-stimulated RAW264.7 cells.


PMID 22644339

Abstract

Stevioside, a diterpene glycoside isolated from Stevia rebaudiana, has been reported to have anti-inflammatory properties. However, the underlying molecular mechanisms are not well understood. The objective of this study was to investigate the molecular mechanism of stevioside in modifying lipopolysaccharide (LPS)-induced signal pathways in RAW264.7 cells. RAW264.7 cells were stimulated with LPS in the presence or absence of stevioside. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction. Nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) were determined by western blot. The results showed that stevioside dose-dependently inhibited the expression of tumor necrosis factor-α, interleukin-6, and interleukin-1β in LPS-stimulated RAW264.7 cells. Western blot analysis showed that stevioside suppressed LPS-induced NF-κB activation, IκBa degradation, phosphorylation of ERK, JNK, and P38. Our results suggest that stevioside exerts an anti-inflammatory property by inhibiting the activation of NF-κB and mitogen-activated protein kinase signaling and the release of proinflammatory cytokines. These findings suggest that stevioside may be a therapeutic agent against inflammatory diseases.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

50956
Stevioside, analytical standard
C38H60O18
S3572
Stevioside hydrate, ≥98% (HPLC)
C38H60O18 · xH2O