The Journal of pharmacology and experimental therapeutics

Morphine withdrawal activates hypothalamic-pituitary-adrenal axis and heat shock protein 27 in the left ventricle: the role of extracellular signal-regulated kinase.

PMID 22647273


The negative affective states of withdrawal involve the recruitment of brain and peripheral stress circuitry [e.g., noradrenergic activity, induction of the hypothalamo-pituitary-adrenocortical (HPA) axis, and the expression and activation of heat shock proteins (Hsps)]. The present study investigated the role of extracellular signal-regulated protein kinase (ERK) and β-adrenoceptor on the response of stress systems to morphine withdrawal by the administration of [amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile (SL327), a selective inhibitor of ERK activation, or propranolol (a β-adrenoceptor antagonist). Dependence on morphine was induced by a 7-day subcutaneous implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by the injection of naloxone (2 mg/kg s.c.). Plasma concentrations of adrenocorticotropin and corticosterone were determined by radioimmunoassay; noradrenaline (NA) turnover in left ventricle was determined by high-performance liquid chromatography; and catechol-O-methyl transferase (COMT) and Hsp27 expression and phosphorylation at Ser82 were determined by quantitative blot immunolabeling. Morphine-withdrawn rats showed an increase of NA turnover and COMT expression in parallel with an enhancement of adrenocorticotropin and plasma corticosterone concentrations. In addition, we observed an enhancement of Hsp27 expression and phosphorylation. Pretreatment with SL327 or propranolol significantly reduced morphine withdrawal-induced increases of plasma adrenocorticotropin and Hsp27 phosphorylation at Ser82 without any changes in plasma corticosterone levels. The present findings demonstrate that morphine withdrawal is capable of inducing the activation of HPA axis in parallel with an enhancement of Hsp27 expression and Hsp27 phosphorylation at Ser82 and suggest a role for β-adrenoceptors and ERK pathways in mediating morphine-withdrawal activation of the HPA axis and cellular stress response.

Related Materials

Product #



Molecular Formula

Add to Cart

Aminoacetonitrile, ≥98%