Free radical research

Nitric oxide augments oridonin-induced efferocytosis by human histocytic lymphoma U937 cells via autophagy and the NF-κB-COX-2-IL-1β pathway.

PMID 22670565


We previously demonstrated that oridonin-induced autophagy enhanced efferocytosis (phagocytosis of apoptotic cells) by macrophage-like U937 cells through activation of the inflammatory pathways. In this study, exposure of U937 cells to 2.5 μM oridonin caused up-regulation of inducible nitric oxide synthase (iNOS) expression and continuous endogenous generation of nitric oxide (NO), which was reversed by pre-treatment with the inhibitors of nitric oxide synthase 1400 W (dihydrochloride) or L-NAME (hydrochloride). NO donor sodium nitroprusside (SNP) and efferocytosis irritant lipopolysaccharide (LPS) could also exert NO generation and iNOS expression. Moreover, oridonin-induced stimulation of efferocytosis was significantly suppressed by 1400 W or L-NAME. In addition, 1400 W or L-NAME impaired oridonin-induced autophagy. Inhibition of autophagy with 3-methyladenine (3MA) or Beclin-1 siRNA attenuated the uptake of apoptotic cells with a slight increase in the production of NO. The pro-inflammatory cytokine interleukin-1β (IL-1β) has been reported to be involved in oridonin-induced efferocytosis in U937 cells and interact with NO to contribute to inflammatory responses. 1400 W or L-NAME blocked the secretion of IL-1β and the activation of NF-κB and COX-2. Provision of SNP or LPS in place of oridonin resulted in the similar enhancement of efferocytosis, autophagy, the release of IL-1β and the expression of signal protein. NO augmented the oridonin-induced efferocytosis by mediating autophagy and activating the NF-κB-COX-2-IL-1β pathway. Inhibition of NF-κB or COX-2 in turn decreased the production of NO and the expression of iNOS. There exists a positive feedback loop between NO generation and NF-κB-COX-2-IL-1β pathway.

Related Materials

Product #



Molecular Formula

Add to Cart

Oridonin, ≥98% (HPLC), solid