EMAIL THIS PAGE TO A FRIEND

The Analyst

A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food.


PMID 22705906

Abstract

A molecularly imprinted photonic polymer (MIPP) sensor for respective detection of tetracycline, oxytetracycline and chlortetracycline is developed based on the combination of a colloidal crystal templating method and a molecular imprinting technique. Colloidal crystal templates are prepared from monodisperse polystyrene colloids. The molecularly imprinted polymer, which is embodied in the colloidal crystal templates, is synthesized with acrylic acid and acrylamide as monomers, N,N'-methylene bisacrylamide as a cross-linker and tetracyclines (TCs) as imprinting template molecules. After removal of the colloidal crystal template and the molecularly imprinted template, the resulted MIPP consists of a three-dimensional, highly ordered and interconnected macroporous array with a thin hydrogel wall, where nanocavities complementary to analytes in shape and binding sites are distributed. The response of MIPP to TCs stimulants in aqueous solution is detected through a readable Bragg diffraction red-shift, which is due to the lattice change of MIPP structures responding to their rebinding to the target TCs molecules. A linear relationship was found between the Δλ and the concentration of TCs in the range from 0.04 μM to 0.24 μM. With this sensory system, direct and selective detection of TCs has been achieved without using label techniques and expensive instruments. The developed method has been applied successfully to detect tetracycline in milk and honey samples.