EMAIL THIS PAGE TO A FRIEND

Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society

Mutations in long-chain 3-hydroxyacyl coenzyme a dehydrogenase are associated with placental maternal floor infarction/massive perivillous fibrin deposition.


PMID 22746996

Abstract

Maternal floor infarction/massive perivillous fibrin deposition (MFI/MPVFD) of the placenta has an unclear etiology. The placenta of an 8-month-old child diagnosed with long-chain 3-hydroxyacyl coenzyme A dehydrogenase (LCHAD) deficiency reportedly showed MFI, but no further evidence of a direct association between MFI/MPVFD and LCHAD deficiency has been documented. Three cases of MFI/MPVFD were studied. Paraffin blocks of placental tissue were retrieved, tissue scrolls were harvested, and DNA was extracted. The alpha-subunit of the mitochondrial trifunctional protein containing the LCHAD coding region (HADHA) was subsequently amplified using specific primer sets and directly sequenced by the dideoxy chain termination method. All 3 placentas demonstrated heterozygous mutations in the HADHA gene. A sample from a 25-4/7 week gestation growth-restricted female infant revealed a heterozygous mutation in exon 11, 1072C>A (glutamine to lysine, Qln358Lys) with a heterozygous sequence difference in the intron following exon 6 (insertion of a T at position +9, +9insT). The 2nd sample from a 32-4/7 week gestation stillborn fetus revealed a heterozygous mutation (+3A>G after exon 3) and a clear homozygous sequence difference in exon 17. The 3rd sample from a 31 weeks gestation infant revealed heterozygosity for the+3A>G mutation after exon 3. All 3 placentas with MFI/MPVFD demonstrated heterozygous mutations in the HADHA gene, and 2 of the 3 placentas had 2 DNA changes. Given a background incidence of heterozygosity for LCHAD mutations of approximately 1 in 220, these findings lend support to the hypothesis that LCHAD mutations may be directly associated with and potentially causative of MFI/MPVFD.