The Journal of cell biology

Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells.

PMID 22753898


Presenilin (PSEN) deficiency is accompanied by accumulation of endosomes and autophagosomes, likely caused by impaired endo-lysosomal fusion. Recently, Lee et al. (2010. Cell. doi: attributed this phenomenon to PSEN1 enabling the transport of mature V0a1 subunits of the vacuolar ATPase (V-ATPase) to lysosomes. In their view, PSEN1 mediates the N-glycosylation of V0a1 in the endoplasmic reticulum (ER); consequently, PSEN deficiency prevents V0a1 glycosylation, compromising the delivery of unglycosylated V0a1 to lysosomes, ultimately impairing V-ATPase function and lysosomal acidification. We show here that N-glycosylation is not a prerequisite for proper targeting and function of this V-ATPase subunit both in vitro and in vivo in Drosophila melanogaster. We conclude that endo-lysosomal dysfunction in PSEN(-/-) cells is not a consequence of failed N-glycosylation of V0a1, or compromised lysosomal acidification. Instead, lysosomal calcium storage/release is significantly altered in PSEN(-/-) cells and neurons, thus providing an alternative hypothesis that accounts for the impaired lysosomal fusion capacity and accumulation of endomembranes that accompanies PSEN deficiency.