EMAIL THIS PAGE TO A FRIEND

ACS applied materials & interfaces

Design of a novel Cu₂O/TiO₂/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol.


PMID 22780307

Abstract

Cu(2)O/TiO(2) heterojunction photocatalyst is built on carbon aerogel (CA) substrate with good adsorption properties by sol impregnation and seed-mediated synthesis approach. The Cu(2)O/TiO(2)/CA electrode has excellent electrosorptive and high efficient photocatalytic properties. Its morphology and surface chemical composition are characterized with SEM, TEM, X-ray diffraction (XRD) and Raman spectra. The UV-vis diffuse reflectance spectra show that the optical absorption edge for Cu(2)O/TiO(2)/CA appears at 636 nm. Under visible-light (λ > 420 nm) irradiation, the photocurrent density increment on Cu(2)O/TiO(2)/CA is 60 times of that on Cu(2)O/TiO(2)/FTO. The electrochemical characteristic is investigated with electrochemical impedance spectrum (EIS). The Cu(2)O/TiO(2)/CA electrode is further applied in the electrosorptive photodegradation of the 2,4,6-trichlorophenol (2,4,6-TCP) wastewater. The result shows that the removal ratio of 2,4,6-TCP in 5.5 h on Cu(2)O/TiO(2)/CA is 96.3% and the TOC removal is 91.3%. The intermediates generated in the degradation process are analyzed by GC-MS and HPLC. The possible mechanism of visible light photocatalytic degradation of 2,4,6-TCP on Cu(2)O/TiO(2)/CA is also studied.