Journal of environmental management

Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution.

PMID 22858801


Novel NH(2)-functionalized cellulose acetate (CA)/silica composite nanofibrous membranes were successfully prepared by sol-gel combined with electrospinning technology. Tetraethoxysilane (TEOS) as a silica source, CA as precursor and 3-ureidopropyltriethoxysilane as a coupling agent were used in membrane preparation. The membrane's chemical and morphological structures were investigated by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD), element analyzer, Fourier-transform infrared spectroscopy (FTIR) and N(2) adsorption-desorption isotherms. The composite nanofibrous membranes exhibited high surface area and porosity. The membranes were used for Cr(VI) ion removal from aqueous solution through static and dynamic experiments. The adsorption behavior of Cr(VI) can be well described by the Langmuir adsorption model, and the maximum adsorption capacity for Cr(VI) is estimated to be 19.46 mg/g. The membrane can be conveniently regenerated by alkalization. Thus the composite membrane prepared from biodegradable raw material has potential applications in the field of water treatment.